Cyclic Sieving Phenomenon in Non-Crossing Connected Graphs
نویسنده
چکیده
A non-crossing connected graph is a connected graph on vertices arranged in a circle such that its edges do not cross. The count for such graphs can be made naturally into a q-binomial generating function. We prove that this generating function exhibits the cyclic sieving phenomenon, as conjectured by S.-P. Eu. Résumé. Un graphe connexe dont les sommets sont disposés sur un cercle est sans croisement si ses arêtes ne se croisent pas. Nous démontrons une conjecture de S.-P. Eu affirmant que la fonction génératrice q-binomiale dénombrant de tels graphes exhibe le phénomène du crible cyclique.
منابع مشابه
Cyclic sieving for two families of non-crossing graphs
We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely, the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded by certain polynomials. Our results confirm two conjectures of Alan Guo. Résumé. Nous prouvons le phénomène de crible cyclique pour les forêts et les graphes sans croise...
متن کاملThe Cyclic Sieving Phenomenon for Non-Crossing Forests
In this paper we prove that the set of non-crossing forests together with a cyclic group acting on it by rotation and a natural q-analogue of the formula for their number exhibits the cyclic sieving phenomenon, as conjectured by Alan Guo.
متن کاملCyclic Sieving of Matchings
Let Pn denote the poset of matchings on 2n points on a circle, labeled 1, 2, . . . , 2n in cyclic order, in which we define an element to be less than another element if it can be obtained by an uncrossing. Let Pn,k denote the level of the poset with k crossings. Let Pn,k denote the level of the poset with k crossings. We study the cyclic sieving phenomenon of Pn,k. It is known that the triple ...
متن کاملCyclic Sieving for Generalised Non–Crossing Partitions Associated to Complex Reflection Groups of Exceptional Type
We present the proof of the cyclic sieving conjectures for generalised non-crossing partitions associated to well-generated complex reflection groups due to Armstrong, respectively to Bessis and Reiner, for the 26 exceptional well-generated complex reflection groups. The computational details are provided in the manuscript “Cyclic sieving for generalised non-crossing partitions associated to co...
متن کاملCyclic Sieving Phenomenon on Matchings
School of Mathematical and Statistical Sciences, Arizona State University Abstract. Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings on [2n] := {1, 2, . . . , 2n} using the cyclic group C2n generated by a cyclic shift of order 2n and the q-Cata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011